

### **EMIBYTE for IT COOLING** Products catalogue

### Index

| About                                                                                                                          | 4  |
|--------------------------------------------------------------------------------------------------------------------------------|----|
| Our numbers                                                                                                                    | 6  |
| Our segments                                                                                                                   | 8  |
| <b>DX.A</b><br>DIRECT EXPANSION CLOSE CONTROL UNIT AIR CONDENSER<br>WITH ON/OFF COMPRESSOR                                     | 16 |
| <b>DXI.A</b><br>DIRECT EXPANSION CLOSE CONTROL UNIT AIR CONDENSED<br>WITH INVERTER COMPRESSOR                                  | 24 |
| <b>DXI.AF</b><br>DIRECT EXPANSION CLOSE CONTROL UNIT AIR CONDENSED<br>WITH ADDITIONAL FREECOOLING COIL, INVERTER COMPRESSOR    | 28 |
| <b>DXI.H</b><br>DIRECT EXPANSION CLOSE CONTROL UNIT WATER COOLED<br>WITH INVERTER COMPRESSOR                                   | 32 |
| <b>DXI.HF</b><br>DIRECT EXPANSION CLOSE CONTROL UNIT WATER COOLED<br>WITH ADDITIONAL FREECOOLING COIL AND INVERTER COMPRESSORS | 38 |
| WU<br>WATER COOLED CLOSE CONTROL UNIT                                                                                          | 42 |
| WUL<br>WATER COOLED CLOSE CONTROL UNIT<br>(EXTENDED VERSION)                                                                   | 46 |
| IRDXI<br>DIRECT EXPANSION CLOSE CONTROL UNIT AIR CONDENSED<br>FOR HIGH DENSITY RACKS - 30 - 60 cm                              | 50 |
| IRWU<br>WATER COOLED CLOSE CONTROL UNIT<br>FOR HIGH DENSITY RACKS - 30 - 60 cm                                                 | 52 |
| RCE / RCE-S<br>EXTERNAL CONDENSING<br>FOR PRECISION AIR CONDITIONING UNITS                                                     | 54 |
| CONFIGURATIONS                                                                                                                 | 60 |

### About

Enex Technologies is a transformative world leader in natural and energy efficient cooling, heating, ventilation and refrigeration equipment that began in the 1930s by producing ammonia natural refrigeration equipment, later adding CO<sub>2</sub>, water and propane as natural refrigerants with low global warming potential.



### **Pioneers and innovators in natural HVACR since the 1930s**





### **Our numbers**

### 200M€ Revenues

### 1000+ Employees

12 Factories

# 125 Countries



Headquarter \*

Manufacturing, R&D site and commercial office



### **Our segments**

Our leading natural refrigerant, energy efficiency and energy transition technologies transform the HVACR industry.



#### COOLING

Our chillers are designed to operate efficiently with all refrigerants, generating cold water for climatization or industrial processes.

#### REFRIGERATION

Our commercial and industrial refrigeration systems are designed for high performance, quality, reliability and carbon footprint reduction through the use of natural refrigerants Ammonia and CO<sub>2</sub>.

#### HEATING

Our high efficiency heat pump range using natural refrigerant  $CO_2$  is a simple-to use, elegant solution for applications requiring high quantities of sanitary hot water.

### We are driven by strong values to create a better and more sustainable world



#### ENVIRONMENT

Buildings consume 40% of the energy used in the developed world. HVACR systems use 60% of the energy in buildings. Our high efficiency solutions are central to reducing global warming, and we strive every day to help our customers reduce their carbon footprint by using natural refrigerants.



#### INNOVATION

Always leading. From pioneering the efficient and safe use of natural refrigerants to helping the industry move away from gas heat towards systems that use electricity.



#### COMMUNITIES

We are a European industrial champion, building clean factories that support new jobs, growth and expansion to new markets.



#### **DIVERSITY & INCLUSION**

At Enex Technologies we ensure that every colleague feels respected, valued and motivated to support our customers, every day.

# THE EMICON LABS

### CLIMATIC ROOMS

EMICON has **climatic rooms** and **testing stations** where units produced are subject to strict **functional** and **performance** tests, with the possibility of simulating the real design climatic conditions. A double hydronic circuit (hot and cold) allows to carry out **operation tests on all types** of units, both for IT Cooling and hydronic units, packaged, 2 or 4 pipes, air cooled, water cooled and split, up to a cooling capacity of 1500 kW.

It is possible, for our customers, to attend the functioning and performance test. Thanks to some webcams, it is possible to **remotely attend the test.** 

### CHARACTERISTICS

The climatic room is an environment inside of which, by means of auxiliary and heat recovery systems, we create a **controlled microclimate** in terms of air **temperature** and **humidity**, where the heat transfer fluids are treated according to the specific characteristics of the unit.

The types of units that can be tested are **air or water cooled units**, available as **chiller** or **reversible heat pump** versions according to **EN14511** standard.

The operating limits of fluid temperature can vary between **-5°C** and **65°C**. The ambient temperature (inside the room) can reach a maximum of 52°C for summer operation and a minimum of -7°C for winter cycle.

### CLOSE CONTROL UNITS

EMICON's Laboratory allows the **performance test** of chilled water and air cooled direct expansion **close control units**, with the possibility to simulate climatic conditions from 15°C to 35°C.

### PROPANE

We recently built a the test area **exclusively** dedicated to chillers and heat pumps operating with natural **Propane refrigerant (R290)**, making us able to carry out performance and functional tests of units with a cooling capacity up to 700 kW both in cooling only and in winter cycle reversible configurations. The use of **ATEX** components, refrigerant leak detection systems, connected to acoustic signals and forced-type exhaust systems guarantee a **high safety degree** in this area.



Mission critical **Cooling & Thermal management** has been Emicon core focus since 1984. Our range of precision air conditioning solutions have been designed for a wide range of applications where **close control**, **high precision cooling** is essential, including **data centres**, telecom switching stations, theatres, museum and high technological density environments in general. Throughout its history, the data center and server room has consistently been asked to do more: handle **more capacity**, deliver **more availability** and achieve **more efficiency**. Thanks to the resourcefulness and dedication of the people responsible for managing these business-critical facilities, they have largely responded. The question now is can they continue to do so within the existing paradigms, or are we on the verge of fundamental changes in data center technologies, designs and processes?



The result to this main question nowadays is **EMIBYTE**, the new partner in **IT cooling** with his new series of products entirely designed and produced in the **Emicon factories**.

**Reliable**, integrated cooling, from **chiller** and computer room **air conditioners**, tackles the issues head on to lower costs and reduce downtime risk. We provide **all levels of heat removal** for different sized rooms and applications. Whether you're building new, retrofitting, or modernizin, achieve a **healthy data center environment** with our **EMIBYTE** cooling solutions.

### LEGEND



Air cooled

Water cooled

Remote condensing

Free cooling

High efficiency

Silenced version

Ultra-silenced version



Scroll inverter Compressors

R410a Refrigerant (Kc)

(R410a

EC

COMPRESSOR

0

Axial fan with EC motor

EC

Plug-fan with EC motor





# COMPONENTS

## FULLY CUSTOMIZABLE AND INTUITIVE TOUCH SCREEN DISPLAY

The new 4.3" touch screen designed to maximise the users system management experience. System usability is enhanced by the web server pages shown on the display relating to each individual controller connected to the network, allowing users to monitor the situation across the entire system from just one single location. Ethernet connectivity makes installation even more practical, without any constraints in terms of location relative to the monitored system.





BUILT-IN TEMPERATURE AND HUMIDITY PROBE Can share the values read with the colour display making the comprehension of operating data easier. Micro-USB port

At the front, concealed by a faceplate, for easier access.



#### **INVERTER SCROLL COMPRESSOR** The best solution in terms of variable cooling capacity

#### PRECISE TEMPERATURE CONTROL

Inverter compressor-based technology allows close monitoring and control of room temperature.



#### EC PREMIUM FAN

The new generation of Emicon EC Fan 2.0 is the core of EMIBYTE Precision Air Conditioner, significantly minimizing noise levels and increasing the efficiency of the unit.

#### ULTRASONIC HUMIDIFIER

Ultrasonic Humidifier option is the new ultrasound cool mist large room humidifier. It has been developed to control and maintain the desired level of humidity for a specific environment or in any large room or storage area constant.





### WU WATER COOLED CLOSE CONTROL UNIT

Ductable close control air-conditioners for vertical installation and cooling only, with optional heating by means of heating element, optional humidifier and dehumidifier for precise temperature and humidity control. Particularly suitable for precision air conditioning in servers and IT rooms and all technological applications in general.

Units fitted with EC INVERTER fans, upflow or downflow. These units are provided with 2 way modulating valve and servomotor. Unit has to be connected with an external chiller.

### Features

Unit for installing inside or outside the room to be air-conditioned. Maximum resistance to rust thanks to galvanised sheet metal structures and panels with powder-coated paint finish. The panels are lined with sound-insulating material to limit noise levels. The reliability and functionality of the all parts are guaranteed by partners who are world leaders in their sector.

Unit for installing inside or outside the room to be air-conditioned. Maximum resistance to rust thanks to galvanised sheet metal structures and panels with powder-coated paint finish. The panels are lined with sound-insulating material to limit noise levels. The reliability and functionality of the all parts are guaranteed by partners who are world leaders in their sector. NEW EC INVER-TER fans with electronic commutation in order to maximize the energy saving and reducing the noise emissions. The fan section is contained within the machine and includes: centrifugal fans with backward curved blades with wing profile, single suction and without scroll housings (Plug-fans), directly coupled to external rotor EC electric motor brushless type with integrated electronic commutated system and continuous variation of the rotation speed.

Standard G4, M5 filtering section is to CEN-EN 779 with average degree of separation 90,1% ASHRAE. The filter is self-extinguishing. Switchboard to IEC 204-1 / EN60204-1.

Chilled water coil with copper tube and aluminium Blue-fins with hydrophilic coating treatment surface to reduce the pressure drops on the air side. Water circuit realized with pipes entirely coated with insulated material and bronze fittings, complete temperature probe and with 2 or 3-way modulating valve.

### Control

Semi-graphic display 132x64 pixel, programmable software, record storage of 200 alarms, general alarm, automatic reset after blackout, integral LAN system, standby management, automatic rotation, serious alarms, operating contemporaneousness, clock function modality.

### VERSIONS

- **D** Downflow air supply
- **U** Up flow air supply
- **E** Front supply (Displacement)
- **B** Up supply, (Rear return)
- **V** Up supply (Down suction)

### ACCESSORIES

- Remote user terminal
- Electric Heating coil
- Humidifier
- Vibration isolation frame with rubber mountings
- Interface electronic board
- Air distribution plenum
- Condensing pump discharge
- Interface card for TCP/IP Protocol
- Longwork, modbus, bacnet
- Touch screen graphic terminal
- Power supply different from standard





### **TECHNICAL DATA**

| WI                                          |                        | 80       | 150      | 190      | 250      | 310      | 440      | 550      | 640          | 700                      | 840          |
|---------------------------------------------|------------------------|----------|----------|----------|----------|----------|----------|----------|--------------|--------------------------|--------------|
| Cooling conscitu (Total) (1) ESP 20 Pa      | L\\/                   | 4.2      | 10.1     | 12       | 14 7     | 20.0     | 20.4     | 27       | 42.0         | 10                       | 55.2         |
| Cooling capacity (Total) (* ESF 20 Fa       |                        | 5.0      | 9.4      | 10.6     | 14.2     | 20,9     | 27,0     | 20.8     | 42,7         | 40<br>29 /               | 55,5<br>A7 A |
| Tet absorbed power <sup>(2)</sup> ESP 20 Pa | KVV<br>L\\/            | 0.2      | 0,0      | 0.4      | 0.4      | 0.7      | 24,7     | 27,0     | 1.2          | 1.2                      | 47,4         |
|                                             | N V V                  | 0,3      | 0,3      | 0,4      | 0,0      | 0,7      | 0,7      | 0.80     | 0.91         | 0.70                     | 0.85         |
| Air flow                                    | m <sup>3</sup> /h      | 2550     | 2550     | 2550     | 4100     | 4100     | 7200     | 7200     | 0,01<br>0100 | 0,7 <del>7</del><br>0100 | 13/00        |
| N° Fans                                     | n°                     | 2550     | 2330     | 2330     | 1        | 1        | 1        | 1        | 1            | 1                        | 13400        |
| ESP may                                     | Pa                     | 563      | 517      | 480      | 445      | 405      | 570      | 522      | 3/19         | 337                      | 338          |
|                                             | i u                    | 505      | 517      | 400      | 775      | 405      | 570      | 522      | 547          | 557                      | 550          |
| (standard)                                  | kPa                    | 32       | 20       | 28       | 41       | 31       | 31       | 31       | 34           | 40                       | 34           |
| Water flow                                  | m³/h                   | 1,1      | 1,7      | 2,2      | 2,9      | 3,6      | 5,1      | 6,4      | 7,4          | 8,3                      | 9,5          |
| Power supply                                | V/ph/Hz                |          |          |          |          | 400/3/5  | 0+N+PE   |          |              |                          |              |
| Humidifier                                  |                        |          |          |          |          |          |          |          |              |                          |              |
| Steam production (nominal)                  | kg/h                   | 1,5      | 1,5      | 1,5      | 3,0      | 3,0      | 5,0      | 5,0      | 8,0          | 8,0                      | 8,0          |
| Steam production (max.)                     | kg/h                   | 3        | 3        | 3        | 3        | 3        | 8        | 8        | 8            | 8                        | 8            |
| Max. absorbed power                         | kW                     | 1,12     | 1,12     | 1,12     | 2,25     | 2,25     | 3,75     | 3,75     | 6,0          | 6,0                      | 6,0          |
| Max. absorbed current                       | А                      | 5,0      | 5,0      | 5,0      | 10,0     | 10,0     | 5,5      | 5,5      | 8,7          | 8,7                      | 8,7          |
| Specific conducibility at 20°C (min/max)    | µS/cm                  | 300/1250 | 300/1250 | 300/1250 | 300/1250 | 300/1250 | 300/1250 | 300/1250 | 300/1250     | 300/1250                 | 300/1250     |
| Total hardness (min/max)                    | mg/l CaCO <sub>3</sub> | 100/400  | 100/400  | 100/400  | 100/400  | 100/400  | 100/400  | 100/400  | 100/400      | 100/400                  | 100/400      |
| Electrical heaters                          |                        |          |          |          |          |          |          |          |              |                          |              |
| Steps                                       | n°                     | 1        | 1        | 1        | 1        | 1        | 2        | 2        | 3            | 3                        | 3            |
| Power                                       | kW                     | 3,0      | 3,0      | 3,0      | 4,5      | 4,5      | 6,0      | 6,0      | 9,0          | 9,0                      | 9,0          |
| Absorbed current                            | А                      | 4,3      | 4,3      | 4,3      | 6,5      | 6,5      | 8,7      | 8,7      | 13,0         | 13,0                     | 13,0         |
| Oversized electrical heaters                |                        |          |          |          |          |          |          |          |              |                          |              |
| Steps                                       | n°                     | 1        | 1        | 1        | 2        | 2        | 3        | 3        | 3            | 3                        | 3            |
| Power                                       | kW                     | 4,5      | 4,5      | 4,5      | 6,0      | 6,0      | 9,0      | 9,0      | 12,0         | 12,0                     | 12,0         |
| Absorbed current                            | А                      | 6,5      | 6,5      | 6,5      | 8,7      | 8,7      | 13,0     | 13,0     | 17,3         | 17,3                     | 17,3         |
| Hot water coil                              |                        |          |          |          |          |          |          |          |              |                          |              |
| Heating capacity <sup>(3)</sup>             | kW                     | 4,9      | 4,9      | 4,9      | 7,3      | 7,3      | 10,67    | 10,67    | 16,7         | 16,7                     | 24,5         |
| Water flow                                  | m³/h                   | 0,85     | 0,85     | 0,85     | 1,3      | 1,3      | 1,86     | 1,86     | 2,91         | 2,91                     | 4,3          |
| Pressure drop (coil + 3 way valve)          | kPa                    | 36       | 36       | 36       | 31       | 31       | 48       | 48       | 56           | 56                       | 46           |
| Coil internal volume                        | dm <sup>3</sup>        | 1,1      | 1,1      | 1,1      | 1,4      | 1,4      | 2,1      | 2,1      | 3,3          | 3,3                      | 4,7          |
| Condensing water pump                       |                        |          |          |          |          |          |          |          |              |                          |              |
| Nominal flow                                | l/h                    | 27,5     | 27,5     | 27,5     | 390,0    | 390,0    | 390,0    | 390,0    | 390,0        | 390,0                    | 390,0        |
| Max. flow (prevalence = $0 \text{ m}$ )     | l/h                    | 34       | 34       | 34       | 500      | 500      | 500      | 500      | 500          | 500                      | 500          |
| Max. discharge height (flow=0 m³/h )        | m                      | 15,0     | 15,0     | 15,0     | 5,4      | 5,4      | 5,4      | 5,4      | 5,4          | 5,4                      | 5,4          |
| Condensing water pump + humidifier          |                        |          |          |          |          |          |          |          |              |                          |              |
| Nominal flow                                | l/h                    | -        | -        | -        | -        | -        | -        | -        | 600          | 600                      | 600          |
| Max. flow (prevalence = $0 \text{ m}$ )     | l/h                    | -        | -        | -        | -        | -        | -        | -        | 900          | 900                      | 900          |
| Max. discharge height (flow=0 m³/h )        | m                      | -        | -        | -        | -        | -        | -        | -        | 6,0          | 6,0                      | 6,0          |
| Dimensions and weight                       |                        |          |          |          |          |          |          |          |              |                          |              |
| Frame                                       | n°                     | 1        | 1        | 1        | 2        | 2        | 3        | 3        | 4            | 4                        | 4,5          |
| Width                                       | mm                     | 550      | 550      | 550      | 750      | 750      | 980      | 980      | 1160         | 1160                     | 1505         |
| Depth                                       | mm                     | 550      | 550      | 550      | 550      | 550      | 750      | 750      | 850          | 850                      | 850          |
| Height                                      | mm                     | 1980     | 1980     | 1980     | 1980     | 1980     | 1980     | 1980     | 1980         | 1980                     | 1980         |
| Weight                                      | Kg                     | 139      | 143      | 148      | 173      | 179      | 237      | 248      | 312          | 318                      | 360          |

(1) Ambient temperature 24°C, Relative humidity 50%, Water 7/12°C.
 (2) The fans electrical power has to be added to the ambient load.

(3) Water temperature 40/45°C, Ambient temperature 20°C, Relative humidity 50%.

|                                                     |                |          |             | 1000     | 4.470    |           | 4740     | 1000     |          |          |
|-----------------------------------------------------|----------------|----------|-------------|----------|----------|-----------|----------|----------|----------|----------|
| WU                                                  |                | 960      | 1050        | 1300     | 1450     | 1600      | 1710     | 1900     | 2100     | 2300     |
| Cooling capacity (Total) <sup>(1)</sup> ESP 20 Pa   | kW             | 63,2     | 68,9        | 88,2     | 95,2     | 106,9     | 115,4    | 126,2    | 140,1    | 157,5    |
| Cooling cpacity (Sensible) <sup>(1)</sup> ESP 20 Pa | kW             | 51,6     | 55,4        | 70,4     | 77,6     | 85,2      | 93,9     | 100,7    | 114,3    | 125,6    |
| Tot. absorbed power <sup>(2)</sup> ESP 20 Pa        | kW             | 1,9      | 2           | 2,2      | 2,7      | 2,9       | 3,1      | 3,3      | 3,5      | 3,8      |
| SHR                                                 |                | 0,81     | 0,80        | 0,79     | 0,81     | 0,79      | 0,81     | 0,79     | 0,81     | 0,79     |
| Air flow                                            | m³/h           | 13400    | 13400       | 16600    | 20100    | 20100     | 23800    | 23800    | 29500    | 29500    |
| N° Fans                                             | n°             | 1        | 1           | 2        | 2        | 2         | 2        | 2        | 3        | 3        |
| ESP max.                                            | Pa             | 308      | 291         | 369      | 277      | 293       | 371      | 366      | 398      | 413      |
| Pressure drop coil + 2 way valve<br>(standard)      | kPa            | 41       | 42          | 35       | 40       | 43        | 47       | 50       | 37       | 40       |
| Water flow                                          | m³/h           | 10,9     | 11,9        | 15,2     | 16,4     | 18,4      | 19,8     | 21,7     | 24,1     | 27,1     |
| Power supply                                        | V/ph/Hz        |          |             |          | 40       | 0/3/50+N+ | PE       |          |          |          |
| Humidifier                                          | 1              |          |             |          |          |           |          |          |          |          |
| Steam production (nominal)                          | ka/h           | 8.0      | 8.0         | 8.0      | 8.0      | 8.0       | 8.0      | 8.0      | 8.0      | 8.0      |
| Steam production (max.)                             | ka/h           | 8        | 8           | 8        | 8        | 8         | 8        | 8        | 8        | 8        |
| Max absorbed power                                  | kW             | 6.0      | 6.0         | 6.0      | 6.0      | 6.0       | 6.0      | 6.0      | 6.0      | 6.0      |
| Max absorbed current                                | Δ              | 8.7      | 8.7         | 8.7      | 8.7      | 8.7       | 8.7      | 8.7      | 8.7      | 8.7      |
| Specific conducibility at 20°C (min/max)            | uS/cm          | 300/1250 | 300/1250    | 300/1250 | 300/1250 | 300/1250  | 300/1250 | 300/1250 | 300/1250 | 300/1250 |
| Total hardness (min/max)                            | mg/LCaCO       | 100/400  | 100/400     | 100/400  | 100/400  | 100/400   | 100/400  | 100/400  | 100/400  | 100/400  |
| Electrical heaters                                  | ing/redees3    | 100/400  | 100/400     | 100/400  | 100/400  | 100/400   | 100/400  | 100/400  | 100/400  | 100/400  |
| Stops                                               | n°             | 3        | 3           | 3        | 3        | 3         | 3        | 3        | 3        | 3        |
| Power                                               | L\\/           | 00       | 0 0         | 15.0     | 18.0     | 18.0      | 24.0     | 24.0     | 27.0     | 27.0     |
| Absorbed surrent                                    | K V V          | 7,0      | 7,0<br>12.0 | 21.7     | 26.0     | 26.0      | 24,0     | 24,0     | 27,0     | 27,0     |
| Absorbed current                                    | A              | 13,0     | 13,0        | 21,7     | 20,0     | 20,0      | 34,0     | 34,0     | 37,0     | 37,0     |
| Oversized electrical heaters                        | m <sup>o</sup> | 2        | 2           | 2        | 2        | 2         | 2        | 2        | 2        | 2        |
| Steps                                               | 1              | 3        | 12.0        | 10.0     | 3        | 3         | 3        | 3        | 3        | 3        |
| Power                                               | KVV            | 12,0     | 12,0        | 16,0     | 24,0     | 24,0      | 27,0     | 27,0     | 30,0     | 30,0     |
| Absorbed current                                    | A              | 17,3     | 17,3        | 26,0     | 34,6     | 34,6      | 39,0     | 39,0     | 52,0     | 52,0     |
| Hot water coll                                      | 1147           | 045      | 04 5        | 24.4     | 07.4     | 07.4      | 10.0     | 40.0     | (0.0     | (0.0     |
| Heating capacity (3)                                | KVV<br>2.4     | 24,5     | 24,5        | 31,1     | 37,4     | 37,4      | 48,9     | 48,9     | 60,8     | 60,8     |
| Water flow                                          | m³/h           | 4,3      | 4,3         | 5,43     | 6,5      | 6,5       | 8,5      | 8,5      | 10,6     | 10,6     |
| Pressure drop (coil + 3 way valve)                  | kPa            | 46       | 46          | 53       | 34       | 34        | 48       | 48       | 42       | 42       |
| Coil internal volume                                | dm³            | 4,7      | 4,7         | 5,8      | 7,1      | 7,1       | 10,45    | 10,45    | 12,6     | 12,6     |
| Condensing water pump                               |                |          |             |          |          |           |          |          |          |          |
| Nominal flow                                        | l/h            | 390,0    | 390,0       | 390,0    | 390,0    | 390,0     | 390,0    | 390,0    | 390,0    | 390,0    |
| Max. flow (prevalence = $0 \text{ m}$ )             | l/h            | 500      | 500         | 500      | 500      | 500       | 500      | 500      | 500      | 500      |
| Max. discharge height (flow=0 m³/h )                | m              | 5,4      | 5,4         | 5,4      | 5,4      | 5,4       | 5,4      | 5,4      | 5,4      | 5,4      |
| Condensing water pump + humidifier                  |                |          |             |          |          |           |          |          |          |          |
| Nominal flow                                        | l/h            | 600      | 600         | 600      | 600      | 600       | 600      | 600      | 600      | 600      |
| Max. flow (prevalence = $0 \text{ m}$ )             | l/h            | 900      | 900         | 900      | 900      | 900       | 900      | 900      | 900      | 900      |
| Max. discharge height (flow=0 m³/h )                | m              | 6,0      | 6,0         | 6,0      | 6,0      | 6,0       | 6,0      | 6,0      | 6,0      | 6,0      |
| Dimensions and weight                               |                |          |             |          |          |           |          |          |          |          |
| Frame                                               | n°             | 4,5      | 4,5         | 5        | 6        | 6         | 7        | 7        | 8        | 8        |
| Width                                               | mm             | 1505     | 1505        | 1860     | 2210     | 2210      | 2565     | 2565     | 3100     | 3100     |
| Depth                                               | mm             | 850      | 850         | 850      | 850      | 850       | 850      | 850      | 850      | 850      |
| Height                                              | mm             | 1980     | 1980        | 1980     | 1980     | 1980      | 1980     | 1980     | 1980     | 1980     |
| Weight                                              | Kg             | 366      | 373         | 456      | 503      | 520       | 600      | 617      | 715      | 751      |

(1) Ambient temperature 24°C, Relative humidity 50%, Water 7/12°C.
 (2) The fans electrical power has to be added to the ambient load.

(3) Water temperature 40/45°C, Ambient temperature 20°C, Relative humidity 50%.



NN

### WATER COOLED CLOSE CONTROL UNIT

(EXTENDED VERSION)

Close control air-conditioners for vertical installation and cooling only, with optional heating by means of heating element, optional humidifier and dehumidifier for precise temperature and humidity control.

Particularly suitable for precision air conditioning in servers and IT rooms and all technological applications in general.

Units consist of two modules: the first housing the heat exchanger, usually placed over the floor, the second where EC inverter fans are fitted. Downflow air supply. These units are provided with modulating 2 way valve and servomotor. Unit has to be connected with an external chiller.

#### **Features**

120 EC

Unit for installing inside or outside the room to be air-conditioned. Maximum resistance to rust thanks to galvanised sheet metal structures and panels with powder-coated paint finish. The panels are lined with sound-insulating material to limit noise levels. The reliability and functionality of the all parts are guaranteed by partners who are world leaders in their sector. NEW EC INVERTER fans with electronic commutation in order to maximize the energy saving and reducing the noise emissions. The fan section includes: centrifugal fans with backward curved blades with wing profile, single suction and without scroll housings (Plug-



fans), directly coupled to external rotor EC electric motor brushless type with integrated

electronic commutated system and continuous variation of the rotation speed.

Standard G4, M5 filtering section, to CEN-EN 779 with average degree of separation 90.1% ASHRAE. The filter is self-extinguishing. Switchboard to IEC 204-1/EN60204-1.

Chilled water coil with copper tube and aluminium Blue-fins with hydrophilic coating treatment surface to reduce the pressure drops on the air side. Water circuit realized with pipes entirely coated with insulated material and bronze fittings, complete temperature probe and with 2 or 3-way modulating valve.

#### Control

Semi-graphic display 132x64 pixel, programmable software, record storage of 200 alarms, general alarm, automatic reset after blackout, integral LAN system, standby management, automatic rotation, serious alarms, operating contemporaneousness, clock function modality.

#### VERSIONS

**D** - Downflow air supply

### ACCESSORIES

- Remote user terminal
- Electric Heating coil
- Humidifier
- Vibration isolation frame with rubber mountings
- Interface electronic board
- Air distribution plenum
- Condensing pump discharge
- Interface card for TCP/IP Protocol
- Longwork, modbus, bacnet
- Touch screen graphic terminal
- Power supply different from standard

### **TECHNICAL DATA**

| WUL                                                 |                   | 900        | 1350       | 1800       | 2200       | 2500       | 3200       |
|-----------------------------------------------------|-------------------|------------|------------|------------|------------|------------|------------|
| Cooling capacity (Total) <sup>(1)</sup> ESP 20 Pa   | kW                | 59,5       | 85         | 115,3      | 136,9      | 169,1      | 216,5      |
| Cooling cpacity (Sensible) <sup>(1)</sup> ESP 20 Pa | kW                | 48,6       | 69,4       | 95         | 111,6      | 138,6      | 176,5      |
| Tot. absorbed power <sup>(2)</sup> ESP 20 Pa        | kW                | 1,6        | 2,5        | 2,9        | 3,8        | 5,2        | 5,4        |
| SHR                                                 |                   | 0,82       | 0,82       | 0,82       | 0,82       | 0,82       | 0,82       |
| Air flow                                            | m³/h              | 12000      | 16500      | 22000      | 26000      | 33000      | 41000      |
| N° Fans                                             | n°                | 1          | 1          | 2          | 2          | 2          | 3          |
| ESP max.                                            | Pa                | 239        | 161        | 295        | 160        | 150        | 318        |
| Pressure drop coil + 2 way valve (standard)         | kPa               | 28         | 24         | 37         | 24         | 33         | 52         |
| Water flow                                          | m³/h              | 10,2       | 14,6       | 19,8       | 23,5       | 29,1       | 37,2       |
| Power supply                                        | V/ph/Hz           |            |            | 400/3/50   | )+N+PE     |            |            |
| Humidifier                                          |                   |            |            |            |            |            |            |
| Steam production (nominal)                          | kg/h              | 8          | 8          | 15         | 15         | 15         | 15         |
| Steam production (max.)                             | kg/h              | 8          | 8          | 15         | 15         | 15         | 15         |
| Max. absorbed power                                 | kW                | 6          | 6          | 11,2       | 11,2       | 11,2       | 11,2       |
| Max. absorbed current                               | А                 | 8,7        | 8,7        | 16,2       | 16,2       | 16,2       | 16,2       |
| Specific conducibility at 20°C (min/max)            | µS/cm             | 300/1250   | 300/1250   | 300/1250   | 300/1250   | 300/1250   | 300/1250   |
| Total hardness (min/max)                            | mg/l CaCO $_{_3}$ | 100/400    | 100/400    | 100/400    | 100/400    | 100/400    | 100/400    |
| Electrical heaters                                  |                   |            |            |            |            |            |            |
| Steps                                               | n°                | 2          | 2          | 2          | 2          | 3          | 3          |
| Power                                               | kW                | 7,4        | 7,4        | 14,8       | 14,8       | 22,2       | 29,6       |
| Absorbed current                                    | А                 | 10,7       | 10,7       | 21,4       | 21,4       | 32,0       | 42,7       |
| Hot water coil                                      |                   |            |            |            |            |            |            |
| Heating capacity <sup>(3)</sup>                     | kW                | 29,7       | 41,37      | 54,98      | 65,62      | 81,32      | 101,37     |
| Water flow                                          | m³/h              | 5,18       | 7,21       | 9,58       | 11,43      | 14,2       | 17,66      |
| Pressure drop (coil + 3 way valve)                  | kPa               | 51         | 50         | 71         | 73         | 61         | 86         |
| Coil internal volume                                | dm <sup>3</sup>   | 7,6        | 11,54      | 13,47      | 15,28      | 17,27      | 22,23      |
| Condensing water pump                               |                   |            |            |            |            |            |            |
| Nominal flow                                        | l/h               | 390        | 390        | 390        | 390        | 390        | 390        |
| Max. flow (prevalence = $0 \text{ m}$ )             | l/h               | 500        | 500        | 500        | 500        | 500        | 500        |
| Max. discharge height (flow=0 $m^3/h$ )             | m                 | 5,4        | 5,4        | 5,4        | 5,4        | 5,4        | 5,4        |
| Condensing water pump + humidifier                  |                   |            |            |            |            |            |            |
| Nominal flow                                        | l/h               | 600        | 600        | 600        | 600        | 600        | 600        |
| Max. flow (prevalence = $0 \text{ m}$ )             | l/h               | 900        | 900        | 900        | 900        | 900        | 900        |
| Max. discharge height (flow=0 $m^3/h$ )             | m                 | 6,0        | 6,0        | 6,0        | 6,0        | 6,0        | 6,0        |
| Dimensions and weight                               |                   |            |            |            |            |            |            |
| Frame                                               | n°                | 4          | 4,5        | 5          | 6          | 7          | 8          |
| Width                                               | mm                | 1160       | 1505       | 1860       | 2210       | 2565       | 3100       |
| Depth                                               | mm                | 850        | 850        | 850        | 850        | 850        | 850        |
| Height                                              | mm                | 1980 + 550 | 1980 + 550 | 1980 + 550 | 1980 + 550 | 1980 + 550 | 1980 + 550 |
| Weight                                              | Kg                | 383        | 485        | 577        | 646        | 775        | 959        |

(1) Ambient temperature 24°C, Relative humidity 50%, Water 7/12°C.
 (2) The fans electrical power has to be added to the ambient load.

(3) Water temperature 40/45°C, Ambient temperature 20°C, Relative humidity 50%.



# CONFIGURATIONS



U

EMIBYTƏ

в

Ε

D

1

Ŷ

# Notes

| <br> |
|------|
| <br> |
|      |
| <br> |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |
| <br> |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |
| <br> |
|      |
|      |
| <br> |
|      |
| <br> |



#### EMIBYTE for IT COOLING - Products Catalogue | Rev.1 Version November 2024 | ENG

Copyright © Enex Technologies

All rights reserved in all Countries.

The technical data and information expressed in this publication are owned by Enex Technologies and have general information. With a view to continuous improvement, Enex Technologies has the right to make at any time, without any obligation or commitment, all the modifications deemed necessary for the improvement of the product, for this reason even substantial changes can be made to the documentation without notice. The example images of the products and components inside the units are illustrative and therefore any brands of the components functional to the construction of the units may differ from any brands represented in this document. This catalog has been prepared with the utmost care and attention to the contents displayed, nevertheless Enex Technologies cannot assume any responsibility deriving from the use, direct or indirect, of the information contained therein.









www.enextechnologies.com · info@enextechnologies.com